Relational Logistic Regression: The Directed Analog of Markov Logic Networks
نویسندگان
چکیده
Relational logistic regression (RLR) was presented at the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR-2014). RLR is the directed analogue of Markov logic networks. Whereas Markov logic networks define distributions in terms of weighted formulae, RLR defines conditional probabilities in terms of weighted formulae. They agree for the supervised learning case when all variables except a query leaf variable are observed. However, they are quite different in representing distributions. The KR-2014 paper defined the RLR formalism, defined canonical forms for RLR in terms of positive conjunctive (or disjunctive) formulae, indicated the class of conditional probability distributions that can and cannot be represented by RLR, and defined many other aggregators in terms of RLR. In this paper, we summarize these results and compare RLR to Markov logic networks.
منابع مشابه
Aggregation and Population Growth: The Relational Logistic Regression and Markov Logic Cases
This paper considers how relational probabilistic models adapt to population size. First we show that what are arbitrary choices for nonrelational domains become a commitment to how a relational model adapts to population change. We show how this manifests in a directed model where the conditional probabilities are represented using the logistic function, and show why it needs to be extended to...
متن کاملPopulation Size Extrapolation in Relational Probabilistic Modelling
When building probabilistic relational models it is often difficult to determine what formulae or factors to include in a model. Different models make quite different predictions about how probabilities are affected by population size. We show some general patterns that hold in some classes of models for all numerical parametrizations. Given a data set, it is often easy to plot the dependence o...
متن کاملRepresenting Aggregators in Relational Probabilistic Models
We consider the problem of, given a probabilistic model on a set of random variables, how to add a new variable that depends on the other variables, without changing the original distribution. In particular, we consider relational models (such as Markov logic networks (MLNs)), where we cannot directly define conditional probabilities. In relational models, there may be an unbounded number of pa...
متن کامل1 Markov Logic: A Unifying Framework for Statistical Relational Learning
Interest in statistical relational learning (SRL) has grown rapidly in recent years. Several key SRL tasks have been identified, and a large number of approaches have been proposed. Increasingly, a unifying framework is needed to facilitate transfer of knowledge across tasks and approaches, to compare approaches, and to help bring structure to the field. We propose Markov logic as such a framew...
متن کاملStructure Learning for Markov Logic Networks with Many Descriptive Attributes
Many machine learning applications that involve relational databases incorporate first-order logic and probability. Markov Logic Networks (MLNs) are a prominent statistical relational model that consist of weighted first order clauses. Many of the current state-of-the-art algorithms for learning MLNs have focused on relatively small datasets with few descriptive attributes, where predicates are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014